UTRGV Open Mathematics Competition Fall 2024

Answer format: unless otherwise stated, all answers must be simplified fully. For trigonometric functions, exact values should be given for arguments that are integer multiples of $\pi/12$; inverse trigonometric functions whose values are integer multiples of $\pi/12$ should be evaluated exactly; logarithms and exponentials should be evaluated exactly when possible; fractions should be in lowest terms; radical expressions should be in simplest form, e.g., $3\sqrt{6}$ is okay but $\sqrt{54}$ isn't; and answers should include proper units where applicable. Multiples/powers of transcendental numbers can left as is, e.g. -5π and e² are okay, and ratios of radicals need not be rationalized, e.g., $\frac{8}{\sqrt{23}}$ is acceptable.

- (1) Place the fraction $\frac{28}{64}$ in lowest terms.
- (2) A semi-circle has a perimeter of 8 cm. Calculate its area.
- (3) Find the integer n that minimizes $4n^2 106n + 12$.
- (4) It costs at least \$1.50 for three apples and three oranges. It costs at most \$0.80 for an apple and 4 oranges. Assuming the items are priced per item and type only (no bulk discounts, etc.) and that all prices are nonnegative, determine...
 - the smallest possible and largest possible prices for a single apple
 - the smallest possible and largest possible prices for a single orange
- (5) Let ABC be a triangle. Let D be a point on the side BC such that $\overline{AC} = \overline{CD}$ and $\overline{AD} = \overline{DB}$. If the angle \widehat{B} is 11 times \widehat{C} , find \widehat{A} in degrees.
- (6) Find the smallest positive integer $n \neq 1$, which satisfies the following congruences simultaneously: $n \equiv 1 \pmod{4}, n \equiv 1 \pmod{8}$ and $n \equiv 1 \pmod{12}$.
- (7) Five friends go to the theater to watch a movie. When they go to find their seats they find only six seats are left. How many different ways can the friends sit in the available seats?
- (8) Compute the following integral

$$\int_0^{2\pi} \cos(x) \cos(2x) \cos(3x) \mathrm{d}x$$

(9) Find the value of

$$\sum_{n=1}^{\infty} \frac{3^{-n}}{n}$$

(10) Compute the value of the following continued fraction

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}}.$$

(11) Find a 2×2 matrix A with real entries such that

$$A^{101} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(12) Consider the ODE

$$x^{2}y'''(x) + 7xy''(x) + 7y'(x) - \frac{7}{x}y(x) = 0.$$

Find the smallest $p \in \mathbb{R}$ so that $\overline{\lim}_{x \to 0^+}(y(x)x^p) < \infty$ for all solutions y. Here, $\overline{\lim}$ denotes the limit superior — it is also denoted lim sup.

(13) Suppose that r_1, r_2 are real numbers such that $r_1r_2 = 2$. If r_1 and r_2 are roots of $x^4 - x^3 + ax^2 - 8x - 8 = 0$,

find a.

- (14) Evaluate the complex contour integral $\oint_C \frac{\sin z}{(z-\pi/4)^4} dz$ where C is the closed curve $|z \pi/4| = \frac{1}{2024}$ oriented *clockwise*.
- (15) Provide an accurate approximation to the roots of

$$\log x - x + 1.02 = 0.$$

The roots you find should be accurate to within an error tolerance on the order of ~ 0.01 . Here log is the natural logarithm.